1、引言
2015年~2017年,机械工业仪器仪表综合技术经济研究所(以下简称“仪综所”)承担了工业和信息化部多项智能制造综合标准化与新模式应用项目,制定基础共性标准草案27项。在项目执行期间,仪综所技术团队走访调研了国内外近百家制造企业,同时与国内外技术团体、标准化组织、著名公司的技术专家交流探讨。特别是2017年,我们分别与德国工业4.0平台实验室网络主管ThomasHahn博士、德国工业4.0标准化委员会主管RinholdPichler先生、日本工业价值链促进会IVI发起人日本法政大学西冈靖之教授等资深专家进行深入交流,这些交流引起了我们的一些深度思考。
一方面,在实践应用上,我国制造业水平与欧美等工业强国相比还具有相当差距。“工业2.0补课、3.0普及、4.0示范”指出了我国企业自动化、数字化、网络化、智能化水平参差不齐的现状。因此,在智能制造实施道路上,切忌盲目跟风,企业必须明确经济效益指标,以打好2.0和3.0基础为首要任务,找到适合自身的实施路径。
另一方面,在以信息物理系统(CPS)为引领的顶层设计上,智能制造/工业4.0参考模型在世界各国如火如荼地建立。我国智能制造系统架构(IMSA)已列为国际上十一种智能制造参考模型架构之一,得到国际标准认可。更进一步,德国和日本两国在推出参考模型之后,正在积极延伸建立基于模型的信息空间数据平台。因此,我国的参考模型在指导智能制造实现与应用中还应继续做实做深,以掌握信息物理空间时代的主动权。
2、我国工业2.0,3.0,4.0实施路线的思考
2.1. 避免误区
我国制造业发展不平衡、不充分特点明显,企业转型升级势在必行,高质量发展是目前我国制造业由大转强的主旋律。“中国制造2025”是实施制造强国战略的第一个十年行动纲领,“智能制造”是主攻方向。《智能制造工程实施指南》、《智能制造发展规划(2016-2020年)》等重要文件发布后,基于自身转型升级需求,在相关部委及地方政府支持下,我国企业已纷纷对原有工厂/车间进行自动化、数字化、网络化升级改造,或者建立新型数字化车间、智能工厂,取得巨大成效。
《智能制造发展规划(2016-2020年)》对“智能制造”进行了描述:“智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式”。但是实践来看,“自感知、自学习、自决策、自执行、自适应”的制造高级阶段对制造企业而言仍难以企及,德国专家预测德国的工业4.0尚需要15~20年时间来实现。因此,鉴于我国智能制造水平参差不齐的现状,如何规划好适用于我国智能制造现状的发展路径成为重点。
近日,中国工程院院刊《Engineering》刊发了最新观点性文章“走向新一代智能制造”,为我国制造业智能转型指明“并行推进、融合发展”的技术路线。可见我国智能制造的顶层设计上已深刻认识到智能制造/工业4.0的实现不可能一蹴而就,需要循序渐进,补齐短板,并行发力。因此,中国制造企业在实施智能制造过程中应“因企而异”,避免盲目跟风和片面认识。
误区一:为了智能制造而智能制造
由于智能制造“大热”,一些企业盲目跟风,存在为了“智能制造”而智能制造的现象。企业应首先明确要达到的经济目标——提升质量、提高效率、降低成本、缩短周期、降低能耗。根据自身的基础,针对于不同的目标,智能制造首要解决的问题和采用的技术手段是不同的。
误区二:智能制造=无人化
许多制造企业提出“机器换人”、“无人工厂”的口号。机器可代替人类的大量体力劳动,实现高效、高质量精准制造,但不能盲目采用“机器换人”,除了要考虑机器与人员置换成本之间的平衡,还需综合考虑操作场地、信息化接口、维护成本等。而且在2.0、3.0、4.0升级的长时间内,机器或“机器人”仅仅是一种自动化或智能化设备,其很难独立满足日益复杂的生产要求。
“人”作为智能制造的重要资源,在应对定制化生产和复杂多变生产环境方面仍处于中心地位。特别对于现阶段“2.0补课、3.0普及、4.0示范”,人、信息系统、物理系统的协同显得尤为重要,智能制造仍需要人工智力参与政策解读、法规约束、知识积累、工匠传承、文化发扬和统筹组织等,以实现有序生产并产生效益,这些都是现阶段的机器无法替代的。
误区三:自动化+软件= 智能制造
自动化和软件是实现智能制造的必要条件但不是充分条件。智能制造强调自动化系统和工业软件的集成与纵横协同,并体现先进的工艺技术和管理理念。除此之外,更需要植入先进的感知系统、控制手段、网络技术和云计算等,进行长时间的数据收集积累,开展数据分析和建模,并不断迭代优化,以实现生产过程快速有效的运行,才能支撑先进的制造方式实现自适应,进而应对复杂的生产环境。
误区四:互联网+大数据= 智能制造
互联网和大数据只是提升智能化的手段之一。智能制造的本体是“制造”,制造装备和生产过程的数字化是基础[1]。没有制造装备与系统的数据采集与互联互通,互联网、云、大数据都将是无源之水。
1 2 3 4 下页