人工智能并不能把数据智能化,但是可以把意义智能化,曾有人在美国做一个人工智能,是用邮政包裹分析它,就是自动化分包裹,自动化辨别地址,不需要人来操作。后来我们把这个软件用在工业方面,我们学习软件有监督式的、非监督式的,里面有很多软件可以用,目的就是把软件工具变成让人可以看得懂的意义。
举一个例子,我们用SOM,一个分类学习的方法,它可以把很多数据一方面缩减,一方面分类、分割,如和辨别出来轴承是内环还是外环有问题,就和医生听心脏声音一样,他本人听不出来,他要磁共振来辨别。所以我们可以经过这个分类找到。
CPS可以更智能化,更有管理性,CPS是实体系统和信息系统对称的系统,比如车跑的时候有一个信息管理系统可以让我们知道哪个地方风险最高,那个地方转弯经常出车祸,我还没有到,在一公里前就减速到30公里每小时,就可以保证安全 。
数据来源有很多种,数据的关系,数据的意义,所以海上风电,当我看到这个风速在变的时候角度不一样了,所以可以根据这个把风速切割,发电量和风速、角度的关系,这个是人不可能知道的事情,当我知道以后就可以知道这个风电连续三个小时就在衰退,明天我就可以做一些事情。
动车也一样,高铁跑的时候直接就用建模分析,每个高铁数据做分析了,我就知道哪一段路不稳,未来中车要做全世界的“一带一路”规划,光有数据是不行的,没有支撑平台不行,高铁轴承两百公里/小时速度以下中国可以做,两百公里/小时速度以上的中国不能做,现在要跑460公里一小时的速度,那这就需要技术来支撑它。
2005年我们和丰田一个压缩机合作,这个压缩机轴承一年坏几次,它在跑的时候一定要压缩,要有效率,它会产生共振,一共振轴承就坯了,这只需要三到五秒钟时间,所以三秒钟时间之内你要监测到马上把能量释放出去就可以解决了,所以我们当时就监测它的压力特徵, 监测到阀门15微妙就能够马上打开。我们从12个参数中只用了四个最重要的参数,我们就用SVM做模型特?分割。分割准不准会造成误差,如果按照原来的情况会有误差,但是如果分割线稍微小心一点,给你警示多一点绝对不会有故障。在过去十一年?有故障?。
日产机器人健康监控,机器人每日自己做一个比较,我们不可能监控他,我根据运动点来做比较,做了比较之后建立一个档案,和其他机器人做比较 。所以不需要他是谁,不需要监控,就是不需要数据量,但是需要它的差异化和特性。我们在加拿大厂做了实际生产,去年10月20号很快抓到两个机器人在变化,三天前就知道会故障了。
中国并不是把过剩的东西送去“一带一路”沿线国家,早期是因为东西做得很多,过剩了,水缸满了,挖一条沟让水出去,这叫“一带一路”,其实并不是这样,所以要把系统工程带出去。智慧海洋我们与中国船舶合作,对海洋里风浪,天气,利用智能化建模让船能够省油。这种就是“蛋黄+蛋白”服务,让全世界的船都省油了,顾客会很高兴的交给你管。
现在我们开发的很多电讯传感器,所以我们开发了皮肤传感器,直接贴在皮肤上,你的皮肤一动我就知道力度大不大,比如腿痛,所以可以根据这个算出 肌肉受伤的问题与运动员是否过度。
结论,大数据要是事实,是效益。