但这些环节在成都工厂内,只需要在Teamcenter中更改数据就能完成。数据一旦调整,工厂互联互通的系统和软件就会实现自动的更新,并调整出新的生产解决方案。
“可以理解为,当我们涉及到对复杂信息的寻找、判断的时候,是可以用机器来替代人的。”李永利说道。在这样的愿景下,引入自动化机器的工厂就像配备了电脑的超市,工人就像收银员,在传统的小卖部里,工人要记住商品价格,自行计算商品总价。但实现数字化制造的工厂,就如同同时配备了电脑和扫描器的超市,收银员只需要按照计算结果收款,而配备的机器就像一个“纠错员”,帮助人避免出现计算和记忆错误。
工业进化本质在提升质量,而非降低成本
人力成本被认为是导致近年制造业竞争力下降的原因,但李永利认为,制造业不能仅仅盯着制造环节的成本,应该更加注重供应链成本。而数字化制造从一开始就不仅仅是为了降低成本,最大的目的在于提升质量,而高质量并不意味高成本。
近年,国内制造业遭遇的发展瓶颈中,人力成本的上涨,被认为是导致制造业竞争力下降的重要原因之一。
“很多制造业的企业主都喜欢谈控制成本,但在西门子看来,质量才是企业的第一竞争力。”李永利反复强调,“质量第一”一直是西门子成都工厂战略目标首位,而这也是客户眼中最重要的价值。
事实上,在他看来,很多时候企业面临的并不仅仅是制造环节的成本,而应该更加注重供应链的成本。因为,即使在劳动密集型企业中,人力成本毕竟只是占据一定的比例,而不是成本的全部。
以一个简单的例子来看,当一款产品出厂时,它同时拥有了两个价值,一个是出厂价值,一个是到客户手中时的价值。“中国很多工厂生产出来的产品,出厂价值不高,但到客户手中的价值就很高,这就是供应链的问题。”李永利说道。
尽管他并不认可仅仅盯着成本来谈论“工业进化”,但李永利强调,数字化制造本身所带来的高质量并不代表是高成本。
高质量在工业制造领域的重要性不言而喻。作为耐用品的工业产品,比如一款海上风力发电机的产品,一旦出现问题,不仅造成的损失不可估量,而且需要动用到直升机维修,维修的后期成本也非常高。
为此,在实现质量提升上,数字化制造首先是借助自动化产线上的机器充当“纠错官”的角色,比如当工人少拧了一颗螺丝,机器会自动发出警示,阻止产品进入下一个环节,通过机器的协助,减少人的出错。
但在西门子看来,通过机器的“检查”杜绝人在制造过程的差错,这只是保证产品质量的基础一步,由制造质量、研发质量以及原材料质量组成的产品质量中,更需要的是借助数字化制造去保障研发质量和原材料质量。
尤其是如何保证原材料质量,一直被认为是制造业界最具挑战性的一个课题。
在SEWC的数字化制造中,一个很重要的方式是对原材料进行可溯源式的管理。也就说,在这座工厂内,当来自各地的原材料被运送到车间后,所有的原材料都拥有了自己的“身份证”。这个身份证可伴随原材料进入生产线,在每一个流程中,都会被相应的设备进行数据的采集和跟踪,并最终储存在后台的数据管理中。
这意味着,一旦有原材料的质量出现问题,工厂可以马上查找到这一批次的原材料在什么时间点,已经走过哪些生产流程。李永利表示,无论客户在今后什么时间反馈质量问题,工厂依旧能够拿出完整的数据,对这些原材料进行追溯,从而保证原材料的质量。
走向工业4.0,管理自动化才是关键
在数字化制造的阶段,通过数据交互,已经能够有效地提升管理效率。但要衡量是否真正走向工业4.0,不是看生产线自动化水平的高低,而是看管理水平的高低。实现管理的自动化,需要实现管理上人完全听命于“电脑”,这才是智能制造的未来。
事实上,这样一座代表着数字化技术如何改造工业制造的前沿工厂,距离工业4.0愿景下的智能工厂仍有距离。在工业4.0的研究中,智能制造和智能工厂一直被认定为两大研究主题。其中,关于智能工厂,被描绘成是一个分散的、具备一定智能化的生产设备,在实现了数据交互之后,形成了高度智能化的有机体,实现虚拟世界和物理世界的融合。
在SEWC中,关于推进数据交互的工作一直未曾停止过。但对于数字化工厂与智能化工厂之间的差距,李永利认为,最关键的一点在于是否真正实现管理的自动化。
德国安贝格电子工厂作为西门子全球首个数字工厂,是SEWC的姐妹工厂。该工厂从1989年投产至今,占地面积与员工数量几乎都保持不变的情况下,产能却比25年前翻了8番。
无论是德国的安贝格电子工厂,还是SEWC,这两家工厂每年要生产几百万件产品,更考验管理的是,产品类别也达到了上千种。当涉及的产品类别众多,而且客户订单数量和周期不同,如何去做好订单管理,以及如何连通订单管理背后的生产制造、物流配送等多个环节,考验的正是管理的智能化水平。
相比普通工厂单凭人力做订单的跟踪管理以及后续生产的调度安排,SEWC的数字制造中,当ERP系统收到订单,MES系统将自动进行生产安排,包括通知采购部门、财务部门等,整个生产包括后期的发货全部由工具充当“指挥”,自动完成。
如果从劳动力的角度看,李永利认为,尽管在生产线上并不认可一味地以机器代替人,减少蓝领工人,但在管理“白领”群体时,在管理层面,他认为可以更多地借助机器,积极使用更多的软件。
“因为未来制造业的衡量标准不是生产线自动化水平的高低,而是管理水平的高低。”他认为,在中国制造实现智能化提升的路上,相比硬件设备,管理水平的高低才是影响中国企业能否实现工业4.0的关键。他强调,要真正实现工业4.0,一大标准是管理水平达到了一定的高度,甚至实现了自动化。
“如果管理实现自动化,也可以理解为,工厂的所有决策和指令都听命于电脑,连人也是听命于电脑。”李永利说道,但实现这一步显然并不容易,至少从理念上,如何让人完全听命于电脑,则需要一场思维变革。
但至少,数字工厂作为实现智能工厂的必经之路,已走出了第一步——让机器代替人去做更多的决策。而等到工厂内,真正能用自动化替代人进行管理,人听命于“电脑”的话,那么,电脑背后所代表的制造的未来,也将来到眼前。
上页 1 2