近日英特尔一家制造工厂推出物联网(IoT)试点计划,以说明将数据分析应用于工厂设备和传感器可如何提升制造流程的运营效率并节约生产成本。
图1 支持为从工厂车间到数据中心的整个过程提供制造智能的端到端基础架构构建模块
图1所示为面向大小型数据集的高级物联网制造架构,这些数据集包含来源于制造车间和制造网络、可供收集和聚合的各类数据。该架构为通过数据可视化、监控和挖掘创建新型商业智能提供了全新可能。
举例来说,该架构可以清理、提取和转换来自现有数据库的结构化数据、来自工具传感器的非结构化数据以及来自传统设备的日志文件,并将它们整合在一个数据存储平台(即Hadoop)中。然后,运行在内部服务器(即数据存储服务器)上不同虚拟机的高级工厂应用可对数据进行可视化和分析。或者,用户可使用网络上的其他分析或监控应用访问这些数据。其他增强功能包括在Hadoop或其他类型文件系统中进行分析或在内存中进行分析以提升性能。分析结果可通过网络商业智能层中的直观可视化功能展示给用户。
英特尔制造部门试点计划中的大数据分析物联网服务器设置
图2 大数据分析服务器
英特尔制造部门在其试点部署中使用的大数据分析服务器如图2所示。戴尔的紧凑型系统 PowerEdge*VRTX2被选作内部服务器,以在私有云环境中托管大数据和分析软件。该系统包含一个Dell PowerEdge VRTX机箱,配备25块900GB硬盘和2台Dell PowerEdgeM820刀片式服务器,每一台服务器配备E5-4600产品家族中的4颗英特尔?至强?处理器。英特尔至强处理器E5-4600 产品家族提供了一款成本适宜的紧凑型四路处理器解决方案,最高支持8个内核、20MB末级高速(L3)缓存和1. 5TB内存容量,同时具备可快速转移数据的信道。
两台M820 服务器可托管分析和应用软件,以及在多台虚拟机中运行的 Hadoop节点。Red Hat Enterprise Linux* forVirtual Datacenters操作系统为针对可扩展、完全虚拟化数据中心而设计的服务器提供了一种全面的虚拟化软件解决方案。
图3 大数据分析服务器上软件分配至虚拟机的情况
图 3 显示了软件被如何分配至不同虚拟机(VM)。该节点托管着 5 台虚拟机,分别运行着不同的分析和应用工作负载。具体包括:
·来自Revolution Analytics的Revolution REnterprise* 是一款基于强大的开源R统计语言的分析软件。该软件可在分析解决方案和企业软件之间提供无缝、安全的数据桥,可解决采用基于R的分析功能及现有IT基础架构的企业所面临的关键集成问题。
· MonetDB*:一种面向列的开源数据库管理系统,旨在帮助高效完成对大型数据库进行的复杂查询任务,如将表格与数百个列和数百万行进行组合。MonetDB已使用在各种需要高性能的应用中,如数据挖掘、在线分析处理(OLAP)、地理信息系统和流数据处理等。
·PostgreSQL*:一款强大的开源对象关系型数据库系统,用于在线交易处理(OLTP)。