智能制造的核心关键词是自动化、连接和智能控制,核心要实现的是整合资源、降低成本和提高效率。作为工业制造业的下一个发展方向,它容易实现么?将会遭遇哪些挑战?
在看图之前,先想一个问题,为什么智能制造和工业4.0是下一个方向?从最早工匠使用工具开始,科技进步的物质形式基本体现在了制造发展的过程,将科技应用到制造的过程最能体现人类理性应用工具和技术等先进手段追求利润最大化和效率最高的伟大境界。所以,按照科技发展的逻辑推断,制造必然向信息化、智能化阶段发展。简单来说,很可能是因为人类智慧已经发展到这个阶段了,再不表现出来已经不能彰显人类的更高级能力。
第1张图:智能制造流程全景图
西门子德国数字化工厂作为优秀的先驱者,用25年的时间已实现75%的生产作业自动化,生产线上的在线监测节点超过1000个,每天采集数据超过5000万。每年生产元器件30亿个,可24小时为客户供货,产能较数字化前提高了8倍。光看数字会觉得基本上智能制造的核心关键指标都提到了,只是不能直接感受到具体牛在哪儿。HCR慧辰TMT研究部整理了一张智能制造流程的全景图(如下),希望能够从全局角度梳理智能制造的相关参与方和影响因素。
从上图不难看出智能制造是个系统工程,即使单点切入也需要系统化规划之后的逐一实现。
挑战1:全连接
缺少任一节点的连接,都有可能影响全面自动化的实现。这里面会涉及多少连接呢?举个例子,说一个现在不太多见的产品,比如摩托车,仅发动机就有250多个零件,至于汽车约有30000个左右。对于制造过程,一个螺丝都不能少,智能制造的连接也是一样。除了这些,其他相关信息包括资金量、管理信息流、物流信息流、服务信息流等各个相关环节需要全面连接。在信息化阶段,ERP系统最大的问题点是逆向流程实现困难。到了智能化阶段除了连接点,还需要在全面连接点中设置双向监控点和生产管理连接点。基于时时海量信息传递和多节点控制的需求,需要单独的连接和数据流转通道以保证整个过程不断点、不丢包,顺利完成全过程。另外,是否有智能产品是与用户建立直接连接的前提。
挑战2:全控制
智能制造将数据流转作为核心,连接全部制造和相关环节,中间的全部过程都似“暗箱”般,非常需要随时知道发生了什么并予以人为纠偏和预警干涉。每个节点的交互设计和计算能力是实现全控制的基础。除了对环节的控制,还需要对智能设备(包括工业机器人)进行监测和控制。智能制造的生产线上将由多个智能设备来替代人类完成执行工作。人与机器的配合及人对机器的控制和管理也是智能制造挑战中比较容易出现掌控外事故的问题点。
挑战:3:资源整合
图中社会环境和用户都是智能制造的影响因素。智能制造阶段,主要存在的工厂形式为大的制造平台和小型个性化工作室。大平台可以满足小批量的定制化需求,小工作室更多体现在与用户的更直接、更短平快的连接。至于智能供应链也将出现大的供应链整合平台,针对不同个性化需求提供快速、“零库存”的供应。智能制造系统化工程需整合供应链、生产、物流、服务平台、营销资源等等,才能最大化的实现智能制造的自动化及产能最大化。
智能制造既然有如此高的要求,从以上可以总结出来两条实现路径:一条是作为龙头企业,自行尝试然后把成功经验复制到行业内其他企业,推动行业整体进步,从而实现更大范围的智能制造。另一条是行业内主要企业把相关资源整合在一起,共同尝试将所有相关环节集中在这一个平台上操作,作为独立的OEM中心存在。不难推断,产业联盟和第三方提供相关解决方案及数据服务或将成为必不可少的存在。
综上所述,智能制造即使还没实现也是符合社会经济发展规律的,本来就是一件任重道远的事儿。另外,所谓挑战对于不同发展阶段和数字化程度不同的企业意义不太一样,不能一概而论。
1 2 下页