• 官方微信

    CA800二维码微平台 大视野

  • 工控头条

    CA800二维码工控头条App

当前位置:自动化网>自动化新闻>产业分析>DSP的特点、发展趋势与应用

DSP的特点、发展趋势与应用

发布时间:2006-03-04 来源:中国自动化网 类型:产业分析 人浏览
关键字:

DSP

导  读:

【编者按】
    数字化技术正在极大地改变着我们的生活和体验。作为数字化技术的基石,数字信号处理(DSP)技术已经、正在、并且还将在其中扮演一个不可或缺的角色。DSP的核心是算法与实现,越来越多的人正在认识、熟悉和使用它。因此,理性地评价DSP器件的优缺点,及时了解DSP的现状以及发展趋势,正确使用DSP芯片,才有可能真正发挥出DSP的作用。  
  
 
 

--------------------------------------------------------------------------------
 
    数字化技术正在极大地改变着我们的生活和体验。作为数字化技术的基石,数字信号处理(DSP)技术已经、正在、并且还将在其中扮演一个不可或缺的角色。DSP的核心是算法与实现,越来越多的人正在认识、熟悉和使用它。因此,理性地评价DSP器件的优缺点,及时了解DSP的现状以及发展趋势,正确使用DSP芯片,才有可能真正发挥出DSP的作用。  

  DSP器件与算法   

  DSP(数字信号处理器)作为一种微处理器,其设计的出发点和通用CPU以及MCU等处理器是不同的。DSP是为完成实时数字信号处理任务而设计的,算法的高效实现是DSP器件的设计核心。DSP在体系结构设计方面的很多考虑都可以追溯到算法自身的特点。我们可以通过考察一个FIR滤波器的I/O关系,即,来了解这两者之间的对应关系,如表1所示。   

  通过表1,可看出DSP器件和算法之间的必然联系。这不仅是芯片设计人员必须考虑的问题,也是芯片使用者必须了解的。 


[img]200634934744108.jpg[/img]
    

  图1 C62x和C64x DSP内核的数据路径图   

[img]2006349343343553.jpg[/img]   

  图2 C64x DSP的两级Cache机制   

  现代数字信号处理器的特点和发展趋势 

  DSP器件的发展,必须兼顾3P的因素,即性能 (performance) 、功耗 (power consumption) 和价格 (price)。总的来说,随着VLSI技术的高速发展,现代DSP器件在价格显著下降的同时,仍然保持着性能的不断提升和单位运算量的功耗不断降低。下面我们主要以TI公司的DSP为例来说明现代DSP芯片的一些特点和发展趋势。   

  通过并行提升DSP芯片的性能   

  传统的DSP芯片通过采用乘加单元和改进的哈佛结构,使其运算能力大大超越了传统的微处理器。一个合理的推论是:通过增加片上运算单元的个数以及相应的连接这些运算单元的总线数目,就可以成倍地提升芯片的总体运算能力。当然,这个推论有两个前提条件必须满足:首先是存储器的带宽必须能够满足由于总线数目增加所带来的数据吞吐量的提高;另外,多个功能单元并行工作所涉及的调度算法其复杂度必须是可实现的。

存储器构架的变化   

  随着芯片主频的不断攀升,存储器的访问速度日益成为系统性能提升的瓶颈。在现有的制造工艺下,片上存储单元的增加将导致数据线负载电容的增加,影响到数据线上信号的开关时间,这意味着片上高速存储单元的增加将是十分有限的。为了解决存储器速度与CPU内核速度不匹配的问题,高性能的CPU普遍采用Cache(高速缓存)机制,新的DSP芯片也开始采用这种结构。以TI的C64x DSP为例,它采用两级Cache的结构,如图2所示。L1 Cache分为独立的程序缓存 (L1P) 和数据缓存 (L1D) ,其大小各为16KBytes,访问速度与DSP内核的运行时钟相匹配,L2 Cache则采用统一的形式管理,其大小从256KB到1MB不等,访问速度相比L1 cache大大降低。L2 Cache通过DMA与外部低速的存储器件进行数据交换。为增加Cache的命中率,C64x的Cache还采用了多路径的结构形式。研究表明,在很多情况下,采用这种多级缓存的架构可以达到采用完全片上存储器结构的系统约80%的执行效率。但是,采用Cache机制也在一定程度上增加了系统执行时间的不确定性,其对于实时系统的影响需要用户认真地加以分析和评估。 

  Cache对于DSP芯片还是一个比较新的概念。DSP开发人员需要更深入地了解Cache的机制,相应地对算法的数据结构、处理流程以及程序结构等做出调整,以提高Cache的命中率,从而更有效地发挥Cache的作用。  

  SoC的趋势  

  对于特定的终端应用,SoC (系统芯片) 可以兼顾体积、功耗和成本等诸多因素,因而逐渐成为芯片设计的主流。DSP器件也逐渐从传统的通用型处理器中分离出更多的直接面向特定应用的SoC器件。这些SoC器件多采用DSP+ARM的双核结构,既可以满足核心算法的实现需求,又能够满足网络传输和用户界面等需求。同时,越来越多的专用接口以及协处理器被集成到芯片中,用户只需添加极少的外部芯片,即可构成一个完整的应用系统。以TI公司为例,其推出的面向第3代无线通信终端的OMAP1510芯片等,面向数码相机的DM270芯片等,面向专业音频设备的DA610芯片等,面向媒体处理的DM642芯片等,都是SoC的典型例子。   

  DSP器件的应用   

  世界上没有完美的处理器,DSP不是万能的。DSP器件的特点使得它特别适合嵌入式的实时数字信号处理任务。  

  实时的概念   

  实时的定义因具体应用而异。一般而言,对于逐样本 (sample-by-sample) 处理的系统,如果对单次样本的处理可以在相邻两次采样的时间间隔之内完成,我们就称这个系统满足实时性的要求。即:tproess>tsample,其中,tproess代表系统对单次采样样本的处理时间,tsample代表两次采样之间的时间间隔。举例来说,某个系统要对输入信号进行滤波,采用的是一个100阶的FIR滤波器,即。假设系统的采样率为1KHz,如果系统在1ms之内可以完成一次100阶的FIR滤波运算,我们就认为这个系统满足实时性的要求。如果采样率提高到10KHz,那么实时性条件也相应提高,系统必须在0.1ms内完成所有的运算。需要注意,tproess还应当考虑各种系统开销,包括中断的响应时间,数据的吞吐时间等。  

  正确理解实时的概念是很重要的。工程实现的原则是“量体裁衣”,即从工程的实际需要出发设计系统,选择最合适的方案。对于DSP的工程实现而言,脱离系统的实时性要求,盲目选择高性能的DSP器件是不科学的,因为这意味着系统复杂度、可靠性设计、生产工艺、开发时间、开发成本以及生产成本等方面不必要的开销。从这个角度而言,即使系统开发成功,整个工程项目可能仍然是失败的。  

  嵌入式应用  

  嵌入式应用对系统成本、体积和功耗等因素敏感。DSP器件在这些方面都具有可比的优势,因此DSP器件特别适合嵌入式的实时数字信号处理应用。反过来,对于某一个具体的嵌入式的实时数字信号处理任务,DSP却往往不是唯一的,或者是最佳的解决方案。我们看到,越来越多的嵌入式RISC处理器开始增强数字信号处理的功能;FPGA厂商为DSP应用所做的努力一直没有停止过;针对某项特定应用的ASIC/ASSP器件的推出时间也越来越快。开发人员面临的问题是如何根据实际的应用需求客观地评价和选择处理器件。表2对给出了这些器件之间的一些简要对比。 

  从表中可以看出,DSP实际上是一种比较折衷的解决方案。以媒体处理应用为例,现行的国际标准较多,包括MPEG1/2/4、H261/3/4等,各种标准在一段时间内共存,新的标准还在不断涌现。如果系统设计需要兼顾实现性能和多标准的适应性,DSP可能是一个较好的选择。但是,如果应用比较固定,对价格又特别敏感,采用专用的ASIC芯片可能就会更加合适。 

  算法是DSP应用的核心   

  随着DSP器件的发展,DSP系统开发的主要工作已经转向软件开发,软件开发将占据约80%的工作量,必须引起足够的重视。另外,在目前的现状条件下,算法是我们核心知识产权的主要体现,也是产品竞争力的主要因素。因此在最后,笔者仍然希望强调:算法是DSP应用的核心。    

  1997年,TI发布了基于VLIW (超长指令字) 体系结构的C62x DSP内核。它在片内集成了两组完全相同的功能单元,各包括一个ALU(算术及逻辑单元)、一个乘法单元、一个移位单元和一个地址产生单元。这8个功能单元通过各自的总线与两组寄存器组连接。理想情况下,这8个功能单元可以完全并行,从而在单周期内执行8条指令操作。VLIW体系结构使得DSP芯片的性能得到了大幅提升。在此基础上,TI又发布了C64x DSP内核,其主要改进之处在于进一步加宽了寄存器组与内存之间的总线宽度,以及改善了单个功能单元对于SIMD (单指令多数据) 操作的支持等。图1分别给出了C62x和C64x DSP内核的数据路径示意图。 

  VLIW结构对功能单元采用静态调度的策略,DSP内部只完成简单的指令分发,调度算法的实现可以由编译器完成,用户也可以通过手工编写汇编代码的形式实现自主调度。其好处是DSP芯片的使用难度大大降低。通过使用高效的C语言编译器,普通用户也可以开发出具有较高效率的DSP运行程序。  
 










本文地址:http://www.ca800.com/news/d_1nrusj6oan27k.html

拷贝地址

上一篇:DSP实时多任务操作系统发展趋势

下一篇:Sun首席设计师畅谈服务器芯片未来发展趋势

免责声明:本文仅代表作者个人观点,与中国自动化网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容!来源网络如有误有侵权则删。

相关新闻
DSP
  • Credo正式推出基于台积电5nm及4nm先进制程工艺的全系列112G SerDes IP产品

    Credo IP产品业务开发助理副总裁Jim Bartenslager表示,“Credo先进的混合信号以及数字信号处理(DSP)112G PAM4 SerDes架构均早已在台积电12nm制程工艺下完成研发并投片验证,且已成功应用于Credo全系列铜连接以及光连接解决方案产品之中。

  • “缺芯”已成市场常态,Renesas、Alliance、ATP等联合破局

    Renesas、Alliance、ATP、进芯电子、国民技术、中科芯、芯海科技等国内外知名供应商,将汇聚世强硬创新产品研讨会主控&存储专场发布新产品、新技术,并分享行业领先技术及热门应用解决方案,共同寻找破局之道。本次研讨会涵盖MCU,DSP,蓝牙SoC,存储等多类可编程产品。

  • 德州仪器TI推出高灵活型可扩展多核解决方案

    日前,德州仪器宣布推出面向开发人员的业界最高性能的高灵活型可扩展多核解决方案,是工业自动化市场处理密集型应用的理想选择。

  • 工控DSP需求坚挺 ADI酝酿逆势增长

    2008年世界经济发生了巨变,环绕在消费电子头顶的光环渐渐褪去,竞争白热化的消费电子战场随之降温。据美国消费电子协会发布的预测报告称,2009年美国消费电子行业收入将为1,710亿美元,比2008年下降0.6%,这是该行业十多年来首次出现收入下滑。金融危机改变了原先竞争高度集中的市场格局,行业巨头们开始审视角力的核心,

  • Omega伺服放大器采用DSP控制

      由Glentek公司制造并由的Total Motion Systems(TMS)公司代理的Omega系列数字PWM无刷伺服放大器主要面向旋转及直线无刷伺服电机,该产品采用高性能DSP控制,可在两种给定模式下工作。   Omega系列伺服放大器包含多个类型,其中,Full Feature型伺服放大器具有电流(转矩)和速度(转/分)两种给定运行模式,采用+/

  • 一种基于DSP实现的LCD液晶屏显示技术

    l 引 言   随着电子产品集成化的发展.液晶显示屏在便携式仪器中实现图像或文字的显示应用更为广泛。同时在当今信息时代,数字图像处理技术对实时性、运算量大的要求越来越高,所以高运算速度的DSP芯片在数字图像处理领域得到了广泛的应用;其使数据采集、控制与人机界面融为一体,由于DSP处理速度快,整个系统能够由

  • 微芯推出16位单片机及数字信号控制器

    Microchip(美国微芯科技公司)宣布推出30款全新的28引脚及44引脚16位器件,在保证低引脚数器件所具备的低成本及体积小等优势的同时,提供更大的内存、更完善的性能以及功能更强大的外设,从而更好地满足嵌入式系统设计人员的需求。由于新器件的推出,Microchip16位单片机及数字信号控制器(DSC)系列不同产品已达到100多款。

  • CSR公司的音频技术应用于丰田G-BOOK车载信息服务系统(图)

      蓝牙连接及无线技术提供商CSR公司日前宣布,其BlueCore5-多媒体芯片被应用于丰田汽车的新型G-BOOK mX和G-BOOK mX Pro车载信息服务与导航设备。G-BOOK使用户能够通过车载立体声系统以无线方式播放来自于移动电话、MP3播放器和个人媒体设备的高清音频,并能够提供高质量的免提体验。   BlueCore5-多媒体适用于各种先进

更多精彩信息看点 请扫描以下二维码