当前位置:自动化网>深圳市雷赛智能控制股份有限公司门户>应用案例>边缘计算:工业互联网的“应急水箱”

边缘计算:工业互联网的“应急水箱”

发布时间:2019-10-15 14:54   类型:行业知道   人浏览

物联网时代的到来,将连接从人与人之间进一步扩展到了人与物、物与物之间,数字化和智能化的浪潮开始席卷制造、电力、交通、医疗、农业、公共事业等各行各业。

据IDC预测,全球数据总量将从2018年的33ZB增长到2025年的175ZB,年复合增长率为61%。随着数据的指数级激增,企业渐渐察觉,以云计算为代表的“集中式统一供水模式”出现了一些问题:每家每户“用水量”的增加使得水厂有些不堪重负;“水”从水厂流到“水龙头”会有一定的延迟;一旦供水厂出现问题,整个供水网络的运作都会受到影响……能否在靠近“水龙头”的地方安装一个“应急水箱”来应对这些挑战呢?边缘计算模式由此兴起。

工业为边缘计算落地提供土壤

根据边缘计算产业联盟(ECC)与工业互联网产业联盟(AII)联合发布的《边缘计算参考架构3.0》报告,边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务,满足行业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。

进入2019年后,边缘计算的热度持续升温,各行各业都在积极推进边缘计算的落地,以期成为这条新赛道上的领跑者。工业领域或许将为边缘计算的落地提供优渥的“土壤”,很多典型的工业场景对边缘计算存在天然的需求。

联网设备规模的迅速扩大使得工厂产生的数据量正以极高的速度发生“膨胀”。根据思科统计,采矿业的操作每分钟可以生成高达2.4TB的数据,每个汽轮机每小时产生0.4TB数据,每个自动化工厂每小时产生1TB数据。

将数据的珍贵程度比作原油毫不过分,然而原油只有经过采集、运输、加工、提炼,才能真正得以使用。工业现场的很多数据“保质期”很短,一旦处理延误,就会迅速“变质”,数据价值呈断崖式下跌。

工业互联网产业联盟边缘计算特设组主席史扬以炼钢过程的轧钢工艺为例,轧钢板就像是压面条,经过擀面杖(轧机)的多次挤压,面(钢板)就越擀越薄。轧机靠多个伺服电机组协同驱动轧制过程,伺服电机组不能出现丝毫的偏差,否则可能导致整块钢板报废。为了保证轧制精度,需要以毫秒级的数据采集频率来监测电机的运转是否正常。显然,在实时性、网络传输成本等多个条件约束下,这个应用场景下是不能把实时数据“上云”的。

边缘计算的出现恰逢其时。它为设备提供了贴身计算服务,预测性维护等应用能够根据实时数据做出最佳决策,让数据的价值得以最大限度释放。

除了时延,工业领域对数据安全的要求也格外严格。比如在石化行业,工艺参数决定了其产品质量和生产成本,是企业的核心数据。如果把这些数据上传到云端,就存在企业安全隐私泄露的风险。边缘计算将数据从集中式管理演变成分布式管理,提高了数据的安全性。


本文地址:http://www.ca800.com/apply/d_1o1aa44tpo8o1_1.html

拷贝地址

版权声明:版权归中国自动化网所有,转载请注明出处!

留言反馈
  • 评价:

  • 关于:

  • 联系人:

  • 联系电话:

  • 联系邮箱:

  • 需求意向:

  • 验证码:

    看不清楚?

  • 在线咨询
下载企业APP

成为企业会员免费生成APP!