摘要:传统的悬梁式抽油机采用恒速运行加装制动单元或能量回馈的方案,能耗和成本方面存在很大的弊端。本文介绍了以雷诺尔RNB2000-U系列变频器为核心的电控系统在油田抽油机上的应用,提出了能量和功率双闭环控制的全新方案,效率更高,成本更低。
关键词:RNB2000-U 变频器 悬梁式抽油机 双闭环
一、引言
我国的油田绝大部分为低能、低产油田,不像国外的油田有很强的自喷能力,大部分油要靠注水来压油入井,靠抽油机(磕头机)把油从地层中提升上来。在我国,以水换油、以电换油是目前油田的现实,耗电费用在我国的石油开采成本中占了相当大的比例。所以,石油行业十分重视节约电能,节省电耗就是直接降低石油的开采成本。
抽油机节能,其首选方案是采用变频器对其电机拖动系统进行改造,抽油机改用变频器拖动后有以下几个好处:
(1) 提高功率因数:输入侧功率因数可由原来的0.25~0.5提高到0.9以上,大大减小了供电电流,从而减轻了电网及变压器的负担,降低了线损,可省去大量的“增容”开支。
(2) 提高运行效率:可根据油井的实际供液能力,动态调整抽取速度,一方面达到节能目的,同时还可以增加原油产量,系统效率大大提高。
(3) 实现了真正的“软起动”:对电动机、变速箱、抽油机都避免了过大的机械冲击,大大延长了设备的使用寿命,减少了停产时间,提高了生产效率。
但是,变频器用于抽油机电机时,也有几个问题需要解决,主要是冲击电流问题和再生能量的处理问题,下面分别加以分析。
二、悬梁式抽油机现状介绍
2.1 悬梁式抽油机机械机构介绍
游梁式抽油机主要是由四大部分组成的:
(1)游梁部分:驴头、游梁、横梁、尾梁、连杆、平衡块(复合平衡抽油机)
(2)支架部分:横梁轴承座、工作梯、护圈、操作台、支架
(3)减速器部分:底座、减速器筒座、减速器、曲柄、配重块、刹车等部件
(4)配电部分:电机座、电机、配电箱等
2.2 悬梁式变频改造现状介绍
就实际的变频改造情况来看,绝大部分抽油机的配重实际上是严重不平衡的,从而造成过大的冲击电流,不仅无谓浪费掉大量的电能,而且严重威胁到设备的安全。同时也给采用变频器调速控制造成很大的困难:一般变频器的容量是按电动机的额定功率来选配的,过大的冲击电流会引起变频器的过载保护,不能正常工作。
此外,在油井开采前期储油量大,储油量大,供液足,为提高才有效率可采用固定频率运行,保证较高的产油量。但是在中、后期,由于石油储油量减少,易造成供液不足,电机若仍然工作在当前频率状态势必浪费电能造成不必要的损耗,这时需要考虑实际工作情况,适当降低电机转速减少冲程有效提高充盈率。
三、传统的变频解决方案介绍
变频技术引入到游梁式抽油机控制中去是大势所趋。变频调速属于无极调速,根据电动机工作电流的大小确定电动机的工作频率,这样可以根据井况的变化,方便的调节抽油机的冲程,达到节能和提高电网功率因数的目的。而矢量变频控制技术的应用可保证低速大转矩输出,转速可以平滑地大范围调节。同时,变频器对电动机保护功能齐全,如短路、过载、过压、欠压及失速等,可有效地保护电机及机械设备,保证设备在安全的电压下工作,具有运行平稳、可靠,提高功率因数等诸多优点,是采油设备改造的理想方案。目前主流的解决方案有以下几种:
方案1:变频器加能耗制动单元
这种方式比较简单,但运行效率低。这主要是因为恒速运行时下冲程状态下电机发电能量回馈导致的。在使用普通变频器时,普通变频器的输入是二极管整流,能量不可反方向流动。上述这部分电能没有流回电网的通路,必须用电阻来就地消耗,这就是必须使用能耗制动单元的原因,也直接导致了能耗较大,整体效率偏低。
缺点:能效偏低,且需加装制动单元和制动电阻。
方案2:变频器加回馈单元控制
为了回馈再生能量,提高效率,可以采用能量回馈装置,将再生能量回馈电网。这样一来,系统就更复杂,投资也更高了。所谓能量回馈装置,其实就是一台有源逆变器。加装能量回馈单元的变频器,用户可根据油井的液位、压力确定抽油机的冲机、速度和产液量,降耗节能,提高泵效;使设备减少磨损,延长使用寿命,高效节能低成本,实现在最大节能状态下的自动化运行。但由于变频器和回馈装置的工作模式,使用能量回馈的方案对于电源端谐波污染很大,电网质量下降明显。
缺点:需要加装回馈装置,成本较高,且对电网污染很大。
四、雷诺尔RNB2000-U系列变频解决方案介绍
鉴于传统的变频改造方案的种种弊端,上海雷诺尔科技股份有限公司通过对悬梁式抽油机工艺的深入探究,采用基于悬梁式抽油机控制工艺的专用软件逻辑,采用能量与功率的双闭环控制,实现对输出频率的连续平滑调整,实现消除负转矩控制,来避免电机动能的回馈、避免母线电压过高。进而达到省去制动单元、省去能量回馈装置的目的,避免了传统变频改造方案的种种弊端。
本方案的核心控制思想是恒输出功率控制,变频器基于输出功率环恒定的PID控制模式,通过调整输出频率来实现恒输出功率控制,可以在满足冲次的前提下,有效降低平均输出功率,实现有效节能,以及保护抽油机机构装置。也就是说,变频器不需要设定特定的运行频率,实际输出频率通过PID闭环自动调节。下冲程时,由于负载由于惯量较大,同步转速低于电机转速时电机发电,变频器输出转矩为负,此时变频器自动提高输出频率消除负转矩避免电机处于发电状态。上冲程时,位能完全转换成动能,此时转速最高,惯量最大,电机减速进行上冲程动作,当转速较低时,变频器工作于恒输出功率的PID调节模式,此时变频器自动提高上冲程转速,完成上冲程动作。
通过整个控制过程可知,电机一直没有处于发电状态,因此无需加装制动单元和RBU回馈装置。同时,整个冲程过程中,下冲程慢,可以浸入更多的油;上冲程快,减少漏油量:大大提高了产油量。
优点:无需加装能量消耗或回馈装置,成本更低;且优化了采油工艺,整机效率大幅提高;变频器母线电压稳定,整机热耗低,整机稳定性更好。
关键参数设置如下:
功能码
|
设定值
|
功能描述
|
备注
|
F00.00
|
2
|
控制模式选择
|
VF控制模式
|
F00.07
|
100Hz
|
最大频率
|
|
F00.08
|
100Hz
|
频率上限
|
|
F00.03
|
0
|
主频率源X给定
|
键盘给定X频率
|
F00.04
|
8
|
辅助频率源Y给定
|
PID给定Y频率
|
F00.06
|
2
|
频率源叠加选择
|
(X+Y)频率
|
F00.10
|
42.00Hz
|
键盘设定频率
|
|
F09.01
|
12.0%
|
PID预置值
|
|
F09.02
|
8
|
PID反馈通道
|
磕头机专用反馈通道
|
F09.04
|
3.0
|
比例增益
|
|
F09.05
|
0.10
|
积分时间
|
|
F13.00
|
1.0S
|
加速时间2
|
PID调节段加速时间
|
F13.01
|
0.0S
|
减速时间2
|
PID调节段减速时间
|
五、雷诺尔RNB2000-U系列变频介绍
上海雷诺尔科技股份有限公司以RNB2000-U变频器DSP控制系统为平台,采用国内技术领先的无PG矢量控制技术,并配合多种保护方式,可应用于异步电机,提供优异的驱动性能。产品在风道设计,硬件配置,软件功能方面都极大的提升了客户易用性及环境适应性。
技术特点:
◆行业专用:基于游梁式抽油机控制工艺的软件逻辑,真正做到行业专用,方案领先。
◆高可靠性选型:关键器件均采用国内外知名品牌,元器件稳定性可靠有保障。
◆大冗余设计:通过严格计算与实验验证,关键元器件采用大裕量设计,以保证整机在油田恶劣环境下的长期稳定性。
◆优化的矢量控制:国内技术领先的无速度反馈矢量控制,低频扭矩大,转矩响应快。
◆软件限流限压功能:良好的电压、电流限制,有效进行关键控制参数限幅以降低变频器的故障风险。
◆环境适应性强:较高的整机过温点,独立的风道设计,加厚三防漆处理,更适合长期运行在油田户外场合。
◆转速追踪再起动功能:实现对旋转中的电机的无冲击平滑起动
◆自动电压调整功能:当电网电压变化时,能自动保持输出电压恒
◆全面的故障保护:过流、过压、欠压、过温、缺相、过载等保护功能
六、结束语
游梁式抽油机传统的变频应用模式因为种种弊端的存在,变频改造控制方案持续改进在所难免。上海雷诺尔科技股份有限公司以其独创性的控制方案必将引领行业方案的变革。同时,RNB2000-U系列变频器可靠的软硬件稳定性也注定了其必将为客户提供极具性价比的用户体验。