在计算机广泛应用的今天,数据采集的重要性是十分显著的。它是计算机与外部物理世界连接的桥梁。各种类型信号采集的难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。
假设对一个模拟信号x(t)每隔Δt时间采样一次。时间间隔Δt被称为采样间隔或者采样周期。它的倒数1/Δt被称为采样频率,单位是采样数/每秒。t=0,Δt,2Δt,3Δt……等等,x(t)的数值就被称为采样值。所有x(0),xΔt),x(2Δt)都是采样值。根据采样定理,最低采样频率必须是信号频率的两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的最大频率叫做恩奎斯特频率,它是采样频率的一半。如果信号中包含频率高于奈奎斯特频率的成分,信号将在直流和恩奎斯特频率之间畸变。
采样率过低的结果是还原的信号的频率看上去与原始信号不同。这种信号畸变叫做混叠(alias)。出现的混频偏差(aliasfrequency)是输入信号的频率和最靠近的采样率整数倍的差的绝对值。
采样的结果将会是低于奈奎斯特频率(fs/2=50Hz)的信号可以被正确采样。而频率高于50HZ的信号成分采样时会发生畸变。分别产生了30、40和10Hz的畸变频率F2、F3和F4。计算混频偏差的公式是:
混频偏差=ABS(采样频率的最近整数倍-输入频率)
其中ABS表示“绝对值”,
为了避免这种情况的发生,通常在信号被采集(A/D)之前,经过一个低通滤波器,将信号中高于奈奎斯特频率的信号成分滤去。这个滤波器称为抗混叠滤波器。
采样频率应当怎样设置。也许可能会首先考虑用采集卡支持的最大频率。但是,较长时间使用很高的采样率可能会导致没有足够的内存或者硬盘存储数据太慢。理论上设置采样频率为被采集信号最高频率成分的2倍就够了,实际上工程中选用5~10倍,有时为了较好地还原波形,甚至更高一些。
通常,信号采集后都要去做适当的信号处理,例如FFT等。这里对样本数又有一个要求,一般不能只提供一个信号周期的数据样本,希望有5~10个周期,甚至更多的样本。并且希望所提供的样本总数是整周期个数的。这里又发生一个困难,并不知道,或不确切知道被采信号的频率,因此不但采样率不一定是信号频率的整倍数,也不能保证提供整周期数的样本。所有的仅仅是一个时间序列的离散的函数x(n)和采样频率。这是测量与分析的唯一依据。数据采集卡,数据采集模块,数据采集仪表等,都是数据采集工具。