• 官方微信

    CA800二维码微平台 大视野

  • 工控头条

    CA800二维码工控头条App

当前位置:自动化网>自动化文库>应用案例>基于光纤通信交互式远方自投装置的研发与应用

基于光纤通信交互式远方自投装置的研发与应用

发布时间:2010-01-12 来源:中国自动化网 类型:应用案例 人浏览
分享到:
关键字:

变电站 光纤通信 远方自投

导读:

摘 要:针对110kV电网联络线上一端停电时,原有变电站备自投装置无法实现远方自投功能,导致部分110kV变电站和一端的220kV变电站全站停电。研究了一种利用已有光纤通信通道传递运行状态信息、故障信息和跳合闸命令...

摘  要:针对110kV电网联络线上一端停电时,原有变电站备自投装置无法实现远方自投功能,导致部分110kV变电站和一端的220kV变电站全站停电。研究了一种利用已有光纤通信通道传递运行状态信息、故障信息和跳合闸命令方式的备用电源自投方案。通过改造原有备自投装置,增加自投逻辑程序,加装光纤通讯模块,实现与光纤网的接口。经在河北邯郸市110kV电网中的应用与实施,很好地实现了串联电网远方备用电源自投。

  关键词:110kV电网 远方自投 光纤 远方备自投

  0、引言

  目前,国内电网部分110kV变电站没有真正实现双电源供电。即不是直接从220kV变电站引来,而是多座变电站串接在两座220kV变电站中间,简称为“手拉手”式闭环连线开环运行结构。正常时,两端电源供电,中间的两座变电站间联络断路器断开。如下图1结构。K1~K4,K6~K10闭合,K5断开,假设左侧220kV变电站停电,变电站1内的备自投无法控制K5,导致变电站1,左侧220kV变电站全站停电。如何解决这一问题,即检测、判断故障,通过何种方式传递、变换站间信息,以便隔离故障,提高供电可靠性,一直是一个难题。笔者针对这个问题,联合邯郸市德普电力自动化设备有限公司,上海安科瑞电气有限公司研制了“基于光纤通信交互式远方自投装置”,很好的解决了这一问题。

1.jpg

  1、高压电网装设该装置的背景和意义

  近阶段,河北电网部分变电站采用“手拉手”式结构,不能完全实现真正意义的双电源供电,当系统发生故障时,经常造成220kV,110kV变电站全站失压,造成负荷损失,极大地影响了我省部分地区的供电可靠性,但由于电网发展资金的限制,不可能在短时间内通过改善电网结构从根本上解决该问题,这种情况下,需要解决该问题,只能靠安装安全自动装置来补救,即基于光纤通信交互式远方自投装置。

  2、几种通信方式的比较

  2.1、TCP/IP以太网

  以太网通信的远方备自投方案,是应用了计算机网络通信技术,通过建立以太网内的TCP/IP协议完成装置间的数据通信,从而实现在局域网内备自投之间的相互通信。每个站的备自投装置都需安装发送和接收终端,各有自己的IP地址。这种方式的特点是:必须建立变电站之间的局域网,还需设计开发专用的备自投发送及接收终端,以太网服务器;通信易受干扰,通信交换信息时间过长,安全性能差,维护难度较大。

  2.2、GPRS技术

  GPRS技术的特点是通过点对点或者中心对多点以及多点之间的无线IP连接,数据以“编码”的形式通过GPRS信道进行通信,利用其传输运行状态信息、故障信息和跳合闸命令信息。这种方式的特点是覆盖广,传输速度快,可长期在线运行。不足的是:安全性能差,信息交换实时性无法控制,安全性能差,整套设备投资较大。

  2.3、光纤通信

  目前,各个110kV变电站之间基本都实现了光纤通信,其光纤通信传输运行状态信息、故障信息和跳合闸命令信息,具有无误差,传输速度快,传输容量大,接口简便灵活,转换方便,基本不受外界电磁干扰等优势,是最可靠的通信通信方式。在此基础上可实现远方备自投装置的任何通信需求。

  这种方案投资小,见效快,安全准确,基本无干扰,所以是目前实现远方备自投的最佳通信方案。

  3、备自投的软件功能设计

  3.1、运行方式分析

  针对图1中的问题,装设的该装置控制的相邻两个变电站四个开关的位置,图2为装置装设图。

2.jpg

  见图2,根据电力系统运行规则,四个断路器至少有一个断路器处于分闸状态,分析出有运行价值的运行方式,如下所列:

  方式一:1DL、3DL、4DL闭合,2DL断开。

  方式二:1DL、2DL、4DL闭合,3DL断开。

  方式三:2DL、3DL、4DL闭合,1DL断开。

  方式四:1DL、2DL、3DL闭合,4DL断开。

  方式五:1DL、4DL闭合,2DL、3DL断开。

  根据功耗的要求,最理想的运行方式为方式五,联络线不存在损耗,但是系统以方式五运行时,线路3不带电,线路3的设备包括电缆、线杆易被盗,长时间不带电设备会老化;另外如果备自投动作,线路充电时间也很长,电源切换的时间也加长,因此一般不考虑。正常运行时选择方式一、方式二,电源1给A站供电,电源2给B站供电。如果电源1或者电源2故障停电,自动转向方式三或方式四。

  方式三或方式四时,供电都被电源一或电源二承担,这点也不符合电力系统要求,只能作为临时供电模式。

  2.3、系统正常运行方式下的特点

  系统在正常运行方式下的特点是:三条线路均带电;有且仅有1个开关断开,处在断开状态的开关两侧均带电;4段母线均带电;当某有一线路发生故障或失电时,需将4段母线恢复带电状态;当母线或开关发生故障时,由相关保护装置切除故障设备。

  2.4、变电站间远方备自投的要求

  系统在方式一(方式二)运行时,假设电源2(电源1)突然停电,备自投装置需要断开4DL(1DL),合上2DL(3DL);假设电源1(电源2)突然停电,备自投装置需要断开1DL(4DL),合上2DL(3DL),保证两个变电站的四段母线带电。两站之间的信息交换可以通过架设的光纤通道完成。

  2.5、备自投的功能

  备自投具有远方自投和就地自投功能,远方备自投就地功能在备自投主机/从机通信异常后,投入了“就地备自投功能”才会起作用。

  在如图2所示的接线方式,只有在线路1、2、3均带电的情况下,该装置(包括远方功能及就地功能)才具有运行的价值。母线或开关发生故障时可以使用母差等保护装置动作来闭锁备自投,在设计该装置动作逻辑时,仅考虑线路失电(线路故障或电源失电)的情况。根据运行状态分析和可能发生的失电情况,可以构造出备自投动作及运行方式转换表。

未标题-1 拷贝.jpg

  4、备自投的硬件功能设计

  该装置应包含有就地备自投功能,可以在常规线路备自投装置上进行改造。常规的备自投装置可以采集进线开关位置,两条进线的线路电压、进线电流及母线电压。通过在常规线路备自投装置上增加光纤通信模块、扩展备自投部分的逻辑功能来满足该装置的需要。

  5、现场应用

  利用这一方案设计的该装置在河北省邯郸市的两座变电站装设。两变电站直线距离15km,铺设有单模光纤通道,该装置使用这一通道完成数据交换,串接在河北电网的两座220kV变电站间,其中串接的还有4座110kV变电站,6座变电站主要供给多个县市的工业、农业用户,居民用户,停电时间过长会造成工业废品增加,影响农业生产,人民的生活。该装置投运后,运行正常。在一次电网倒闸操作中,该装置实现方式一向方式三的自动切换,操作在500mS内完成,达到了预期的效果。

  6、结语

  该装置很好的解决了“手拉手”式电网结构开环运行不能保证连续供电的问题,有一定的推广价值。

  验收委员会认为“110kV系统远方备自投技术研究”项目研究方法合理,试验数据真实可信,装置的使用能有效提高串联互供接线方式下两个变电站供电的可靠性。

本文地址:本文地址: http://www.ca800.com/apply/d_1nrutga2l1ejk_1.html

拷贝地址

上一篇:应用在无纺布行业中的PLC升级改造

下一篇:高清视频通讯系统和图像监控联网管理平台在公安交通系统中的应用

免责声明:本文仅代表作者个人观点,与中国自动化网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容!